Outline: Parametric Curves

1. Velocity, Acceleration, and Speed

If $\vec{x}(t) = (x(t), y(t))$ is a parametric curve, its **velocity** and **acceleration** are given by the formulas

velocity = $\vec{x}'(t) = (x'(t), y'(t))$ and acceleration = $\vec{x}''(t) = (x''(t), y''(t))$.

The magnitude of the velocity is called the **speed**:

speed =
$$\|\text{velocity}\| = \|\vec{x}'(t)\| = \sqrt{x'(t)^2 + y'(t)^2}.$$

A curve $\vec{x}(t)$ is called a **unit-speed curve** if its speed is equal to 1 at every point.

2. Unit Tangent and Unit Normal

If $\vec{x}(t) = (x(t), y(t))$ is a parametric curve, the **unit tangent vector** $\vec{T}(t)$ is a unit vector in the direction of the velocity:

$$\vec{T}(t) = \frac{\vec{x}(t)}{\|\vec{x}'(t)\|} = \left(\frac{x'(t)}{\sqrt{x'(t)^2 + y'(t)^2}}, \frac{y'(t)}{\sqrt{x'(t)^2 + y'(t)^2}}\right)$$

Note that, if $\vec{x}(t)$ is a unit-speed curve, then the velocity vector $\vec{x}'(t)$ and the unit tangent vector $\vec{T}(t)$ are the same.

The **unit normal vector** $\vec{U}(t)$ is the unit vector obtained by turning $\vec{T}(t)$ counterclockwise 90°:

$$\vec{U}(t) = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \vec{T}(t).$$

That is, if $\vec{T}(t) = (T_1(t), T_2(t))$, then $\vec{U}(t) = (-T_2(t), T_1(t))$.

3. Critical Points and Regular Curves

If $\vec{x}(t)$ is a parametric curve, a **critical point** for \vec{x} is a value of t for which $\vec{x}'(t)$ is either undefined or equal to $\vec{0}$. Critical points for parametric curves often correspond to bends or cusps in the curve itself:

A value of t that is not a critical point is called a **regular point**. A curve $\vec{x} : I \to \mathbb{R}^2$ is called **regular** if all of the values of t in I are regular points, i.e. if it has no critical points in its domain.

Note that the unit tangent vector $\vec{T}(t)$ is only defined at the regular points of a curve. In particular, if $\vec{x}'(t) = \vec{0}$, then it isn't possible to define a unit vector in the direction of $\vec{x}'(t)$.

4. Arc Length

The **arc length** of a parametric curve $\vec{x}(t) = (x(t), y(t))$ for $a \le t \le b$ is the integral of its speed:

arc length =
$$\int_{a}^{b} \|\vec{x}'(t)\| dt = \int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2}} dt$$

The arc length parameter s(t) represents the arc length starting at a specified point on the curve:

$$s(t) = \int_{a}^{t} \|\vec{x}'(\tau)\| d\tau = \int_{a}^{t} \sqrt{x'(\tau)^{2} + y'(\tau)^{2}} d\tau$$

Note that s(t) is positive for t > a, and negative for t < a. By the Fundamental Theorem of Calculus, the derivative of s is the speed of the curve:

$$s'(t) = \text{speed} = \|\vec{x}'(t)\| = \sqrt{x'(t)^2 + y'(t)^2}.$$

For a unit speed curve, s'(t) = 1, and hence s(t) = t - a.

5. Reparameterization

If \mathcal{C} is a curve parameterized by $\vec{x} \colon I \to \mathbb{R}^2$, we can **reparameterize** \mathcal{C} by making a substitution of the form t = f(u) in the formula for $\vec{x}(t)$, where f is some invertible function. For example, if

$$\vec{x}(t) = (\cosh t, \sinh t), \qquad 0 \le t \le 9,$$

we can reparameterize this curve by substituting $t = u^2$. This gives us a new parameterization of the same curve:

 $\vec{y}(u) = \left(\cosh(u^2), \sinh(u^2)\right), \qquad 0 \le u \le 3.$

6. Unit-Speed Parameterizations

We can make any regular curve $\vec{x}(t)$ into a unit-speed curve by using the arc length parameter s. Starting with the formula for s(t), simply solve for s in terms of t and then plug the result into $\vec{x}(t)$. For example, if

$$\vec{x}(t) = \left(\cos(t^3), \sin(t^3)\right)$$

then the corresponding arc length parameter is $s(t) = t^3$. Solving for t in terms of s gives $t = s^{1/3}$, and plugging this into $\vec{x}(t)$ gives a unit-speed curve:

$$\vec{y}(s) = \vec{x}(s^{1/3}) = (\cos s, \sin s).$$