Outline: Parametric Curves

1. Velocity, Acceleration, and Speed

If $\vec{x}(t)=(x(t), y(t))$ is a parametric curve, its velocity and acceleration are given by the formulas

$$
\text { velocity }=\vec{x}^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right) \quad \text { and } \quad \text { acceleration }=\vec{x}^{\prime \prime}(t)=\left(x^{\prime \prime}(t), y^{\prime \prime}(t)\right)
$$

The magnitude of the velocity is called the speed:

$$
\text { speed }=\| \text { velocity }\|=\| \vec{x}^{\prime}(t) \|=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}
$$

A curve $\vec{x}(t)$ is called a unit-speed curve if its speed is equal to 1 at every point.

2. Unit Tangent and Unit Normal

If $\vec{x}(t)=(x(t), y(t))$ is a parametric curve, the unit tangent vector $\vec{T}(t)$ is a unit vector in the direction of the velocity:

$$
\vec{T}(t)=\frac{\vec{x}(t)}{\left\|\vec{x}^{\prime}(t)\right\|}=\left(\frac{x^{\prime}(t)}{\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}}, \frac{y^{\prime}(t)}{\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}}\right)
$$

Note that, if $\vec{x}(t)$ is a unit-speed curve, then the velocity vector $\vec{x}^{\prime}(t)$ and the unit tangent vector $\vec{T}(t)$ are the same.

The unit normal vector $\vec{U}(t)$ is the unit vector obtained by turning $\vec{T}(t)$ counterclockwise 90° :

$$
\vec{U}(t)=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] \vec{T}(t)
$$

That is, if $\vec{T}(t)=\left(T_{1}(t), T_{2}(t)\right)$, then $\vec{U}(t)=\left(-T_{2}(t), T_{1}(t)\right)$.

3. Critical Points and Regular Curves

If $\vec{x}(t)$ is a parametric curve, a critical point for \vec{x} is a value of t for which $\vec{x}^{\prime}(t)$ is either undefined or equal to $\overrightarrow{0}$. Critical points for parametric curves often correspond to bends or cusps in the curve itself:

A value of t that is not a critical point is called a regular point. A curve $\vec{x}: I \rightarrow \mathbb{R}^{2}$ is called regular if all of the values of t in I are regular points, i.e. if it has no critical points in its domain.

Note that the unit tangent vector $\vec{T}(t)$ is only defined at the regular points of a curve. In particular, if $\vec{x}^{\prime}(t)=\overrightarrow{0}$, then it isn't possible to define a unit vector in the direction of $\vec{x}^{\prime}(t)$.

4. Arc Length

The arc length of a parametric curve $\vec{x}(t)=(x(t), y(t))$ for $a \leq t \leq b$ is the integral of its speed:

$$
\text { arc length }=\int_{a}^{b}\left\|\vec{x}^{\prime}(t)\right\| d t=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t
$$

The arc length parameter $s(t)$ represents the arc length starting at a specified point on the curve:

$$
s(t)=\int_{a}^{t}\left\|\vec{x}^{\prime}(\tau)\right\| d \tau=\int_{a}^{t} \sqrt{x^{\prime}(\tau)^{2}+y^{\prime}(\tau)^{2}} d \tau
$$

Note that $s(t)$ is positive for $t>a$, and negative for $t<a$. By the Fundamental Theorem of Calculus, the derivative of s is the speed of the curve:

$$
s^{\prime}(t)=\text { speed }=\left\|\vec{x}^{\prime}(t)\right\|=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}
$$

For a unit speed curve, $s^{\prime}(t)=1$, and hence $s(t)=t-a$.

5. Reparameterization

If \mathcal{C} is a curve parameterized by $\vec{x}: I \rightarrow \mathbb{R}^{2}$, we can reparameterize \mathcal{C} by making a substitution of the form $t=f(u)$ in the formula for $\vec{x}(t)$, where f is some invertible function. For example, if

$$
\vec{x}(t)=(\cosh t, \sinh t), \quad 0 \leq t \leq 9
$$

we can reparameterize this curve by substituting $t=u^{2}$. This gives us a new parameterization of the same curve:

$$
\vec{y}(u)=\left(\cosh \left(u^{2}\right), \sinh \left(u^{2}\right)\right), \quad 0 \leq u \leq 3
$$

6. Unit-Speed Parameterizations

We can make any regular curve $\vec{x}(t)$ into a unit-speed curve by using the arc length parameter s. Starting with the formula for $s(t)$, simply solve for s in terms of t and then plug the result into $\vec{x}(t)$. For example, if

$$
\vec{x}(t)=\left(\cos \left(t^{3}\right), \sin \left(t^{3}\right)\right)
$$

then the corresponding arc length parameter is $s(t)=t^{3}$. Solving for t in terms of s gives $t=s^{1 / 3}$, and plugging this into $\vec{x}(t)$ gives a unit-speed curve:

$$
\vec{y}(s)=\vec{x}\left(s^{1 / 3}\right)=(\cos s, \sin s)
$$

